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Abstract: We consider the non-Abelian action for the dynamics of NDp′-branes in the

background of MDp-branes, which parameterises a fuzzy sphere using the SU(2) algebra.

We find that the curved background leads to collapsing solutions for the fuzzy sphere except

when we have D0 branes in the D6 background, which is a realisation of the gravitational

Myers effect. Furthermore we find the equations of motion in the Abelian and non-Abelian

theories are identical in the large N limit. By picking a specific ansatz we find that we

can incorporate angular momentum into the action, although this imposes restriction upon

the dimensionality of the background solutions. We also consider the case of non-Abelian

non-BPS branes, and examine the resultant dynamics using world-volume symmetry trans-

formations. We find that the fuzzy sphere always collapses but the solutions are sensitive

to the combination of the two conserved charges and we can find expanding solutions with

turning points. We go on to consider the coincident NS5-brane background, and again

construct the non-Abelian theory for both BPS and non-BPS branes. In the latter case we

must use symmetry arguments to find additional conserved charges on the world-volumes

to solve the equations of motion. We find that in the Non-BPS case there is a turning so-

lution for specific regions of the tachyon and radion fields. Finally we investigate the more

general dynamics of fuzzy S
2k in the Dp-brane background, and find collapsing solutions

in all cases.
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1. Introduction

There has been much recent work on time dependence in gravitational backgrounds [1, 2].

The basic idea has been to introduce a probe BPS Dp brane into the non-trivial geometry

of a large number of background branes and study its corresponding dynamics. This has

also been extended to include non-BPS branes and supertube probes. The introduction

of a probe brane tends to break all the supersymmetry associated with the background

configurations, and therefore the probe will experience a gravitational force due to the

source branes. Of course, by selecting specific probes in backgrounds we can preserve the

superymmetries and there will be no net force. However we generally see that probes

placed in the non-trivial backgrounds are unstable, and share many similarities to the

condensation of the open string tachyon [3, 4]. In particular, it can be seen that the energy
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momentum tensor localised on the probe brane has vanishing pressure at late times which

is similar to the fluid at the tachyonic vacuum.1

It has also been suggested that the open string tachyon may have a geometrical in-

terpretation in terms of one dimensional brane motion in a confined, bounded non-trivial

background with Z2 symmetry [6, 7]. Specifically we see that the radion field, parameter-

ising the distance of a probe brane from the source branes, becomes tachyonic when placed

at the unstable point in the background. In addition, we have seen that these geometrical

tachyons exhibit similar kink solutions to those of the open string tachyon, and we would

also expect there to be stable vortex solutions. Although this has proven to be tantalising,

it still remains to be seen whether it is possible to determine the true relationship between

the open string tachyon and its geometrical cousin.

Most of this work, however, has focused on a solitary probe brane thus it seems logical

that this program should be extended to include multiple branes. As is well known, the

presence of N coincident Dp-branes implies that there is a unitary U(N) gauge theory, due

to the open string degrees of freedom [8]. This means that the effective DBI action is no

longer applicable and we must resort to using the non-Abelian extension [8, 9]. One of

the major differences between the two is that the scalar fields must now transform under

a representation of a gauge group. Therefore they no longer commute with one another,

leading us to introduce the notion of non-commutative coordinates and hence many of the

ideas associated with non-commutative geometry. Although this approach has been useful,

it is known that the non-Abelian action agrees only up to terms of order F 6 [8] when

compared to exact open string calculations. Furthermore, there has been no satisfactory

resolution to the problem of the finite N expansion of the action. Despite this, there has

been an incredible amount of work done in this field with regards to intersecting brane

configurations leading to the construction of fuzzy funnels. One of the byproducts of this

has been the large-small dualities between funnel solutions and collapsing spheres sourced

by D0-branes [11]. Again it seems only logical to look at non-trivial backgrounds to see if

these dualities still hold. It has also been suggested that the event horizon of black holes

should be described by fuzzy spheres. If this is the case, then our analysis would hopefully

yield some solutions with regard to the classical stability of such as system.

This paper will attempt to analyse the dynamics of several probe branes in curved

backgrounds of coincident D-branes and NS5-branes using the irreducible representation

of SU(2), which corresponds to a fuzzy sphere geometry. We will only consider flat static

branes all localised at the same point in the bulk space-time. More complicated back-

grounds such as the ring configuration will not be analysed [12, 13], although should be

tackled at some point in the future. One of the most important things to note is that

there are exact conformal field theories associated with coincident background solutions,

and so any results obtained here will correspond to operators in the CFT. We begin by

constructing the low energy action for coincident Dp′-branes in a Dp-brane background,

and examine the solutions.

1Recall that the open string degrees of freedom at the tachyon vacuum vanish and only closed string

modes remain. This is due in part to the reduction of the metric to a Carollian form [5].
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2. Background solution and brane action

We consider the standard type II supergravity background solution for M coincident Dp-

branes. These source branes are all assumed to be parallel in the sense that their world

volumes are oriented in the same directions, and that they are static. This will ensure that

our solutions are as simple as possible. The 10-dimensional bulk spacetime is assumed to

be infinite in extent, and there are no gravitational moduli in the problem. The solutions

for the metric, dilaton and R-R field are given by [1, 14]

ds2 = H−1/2ηµνdxµdxν + H1/2dxmdxn

eφ = H(3−p)/4

C0...p = 1 − H−1, (2.1)

where µ, ν represent directions parallel to the background branes, whilst m,n are trans-

verse directions. The harmonic function H satisfies the Laplace equation in the transverse

Euclidean space. In general it can be written as a multi-centred function of the transverse

coordinates:

H = 1 +
M
∑

i=1

k̃p

|x − xi|7−p
(2.2)

which for coincident D-branes reduces to

H = 1 +
k

r7−p
. (2.3)

where, r =
√

xmxm and kp = (2
√

π)5−pMΓ(7−p
2 )gsl

7−p
s . As usual ls is the string length

and gs is the string coupling at infinity.

Into this background we wish to insert N probe Dp′-branes where we must ensure that

N < M and also that p ≥ p′ in order to satisfy the supergravity constraints (note that we

will neglect the case of p′ = −1 in IIB, which corresponds to the D-instanton). Because

there is more than a single probe brane we can no longer use the Abelian DBI action, as

the extra massless string modes enhance the gauge symmetry on the world-volume. In

order to proceed we must first introduce the non-Abelian action for the bosonic fields. The

first part is the enhanced Born-Infeld contribution,

SBI = −τp

∫

dp′+1ζSTre−φ
√

−det(P[Eab + Eai(Q−1 − δ)ijEjb] + λFab)
√

det(Qi
j).

(2.4)

where we have the usual definitions

λ = 2πl2s , Eµν = Gµν + Bµν , and Qi
j ≡ δi

j + iλ[φi, φk]Ekj. (2.5)

The second part of the action is the Chern-Simons part coupling the background R-R field

to the probe branes world volumes.

SCS = µp

∫

STr(P[eiλiφiφ
∑

C(n)eB ]eλF ). (2.6)
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As usual P[. . .] represents the pullback of the spacetime tensors to the brane worldsheet.

The action contains φi terms, where i = p + 1 . . . 9 run over the transverse coordinates.

In fact these are the transverse scalars in the action which are actually N × N matrix

representations of the U(N) worldsheet symmetry. The STr(. . .) denotes the symmetrized

trace operation, the prescription for which is to take a symmetrized average over all the

possible orderings of the Fab,Daφ
i, i[φi, φk], and all the possible orderings of the individual

scalars prior to taking the trace.2 In the Chern-Simons action we see the iφ denote the

interior product by φi regarded as a vector in the transverse space. For a general p-form,

we see the interior derivatives act as

iφiφC(p) =
1

2
[φi, φj ]C

(p)
ji . (2.7)

It is well known that a Dp-brane is electrically charged under the (p+1) form RR potential,

with a charge µp. Supersymmetry constraints impose the additional condition that µp =

±τp. The non-Abelian Chern-Simons action shows that a Dp-brane can couple to R-R

charges of higher dimensionality, and thus permits the possibility of a brane dielectric

effect. For example, if we expand the Chern-Simons action to leading order with no gauge

field or B field, we have

SCS = µp

∫

Tr(P[C(p+1) + iλiφiφC(p+3) − λ2

2
(iφiφ)2C(p+5)]). (2.8)

In this note we are assuming that all the probe branes are parallel to the source branes,

therefore we find that the leading order contribution to the Chern-Simons coupling reduces

to:

SCS = µp

∫

Tr(P[Cp+1]) (2.9)

which, upon insertion of the background solutions, becomes

SCS = −q

∫

dtNH−1 (2.10)

up to an arbitrary constant, where q = +1 corresponds to a D-brane probe and q = −1

corresponds to an antibrane. Now, in the Abelian case we know that there is only a

coupling if p = p′ or if p = 6, p′ = 0. Since we are neglecting higher order corrections to

the Chern-Simons action, we effectively have the same situation and so we must remember

to include these couplings in our effective theory.

To simplify the analysis as much as possible we will only consider time dependent

solutions for the transverse scalars. This will ensure that no caustics form in the action.

We will also set Fab to zero, and allow the only fields to be excited on the branes to be

those which are not in the angular directions. This will also ensure that the B field will

drop out of the action. To ensure that the action is dimensionally consistent, we must be

aware that the xi (i=p + 1 . . . 9) coordinates transform as

xi = λφi, (2.11)

2In [10], two loop corrections to the DBI action resulting from the curved background were computed.

These lead to modifications of the symmetrized trace prescription and it would be of interest to see if this

results in modifications to our fuzzy solutions.
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and the physical distance between background branes and probe branes in the harmonic

function becomes

r2 =
λ2

N
Tr(φiφjδij). (2.12)

Now that we have set the stage, we can use our Dp-brane solutions to determine the

dynamics of a collapsing fuzzy sphere in this background, which we assume can be regarded

as a probe of the geometry. Therefore we are neglecting any back reaction and 1/N

corrections in what follows.

3. Radial collapse

In this section, we will consider the purely radial motion of the N Dp′-branes in the

background of the M Dp-branes, where we must ensure that M > N for the supergravity

solutions to hold. To simplify the problem even further, we set all the coordinates to zero

with the exception of x7 . . . x9. For simplicity we will only examine the p = p′ case in

detail, as there are difficulties associated with the solutions when p 6= p′. This shouldn’t

be surprising as the same thing happens in the Abelian case, where we must look for

world-volume symmetry transformations in order to solve the equations of motion. We

expect this to hold in the non-Abelian case, which poses questions about the relationship

between non-Abelian brane solutions and the space-time uncertainty principle. Although

we will not discuss the implications in this note, it would certainly be interesting for future

investigations.

3.1 Dynamics in the p = p′ case.

In this particular instance, the background solution allows us to write the action as follows;

S = −τp′

∫

dp′+1ζSTr

(

H−1

√

(1 − Hλ2φ̇iφ̇jδij)(1 − 1

2
λ2H[φi, φj ][φj , φi])

)

SCS = −τp′

∫

dp′+1ζ
qN

H
, (3.1)

where we have made the approximation Qij ∼ δij , and only expanded the second square

root term to leading order. Our approximation that the inverse matrix Qij is treated as

unity to leading order in lambda is consistent as long as our solution only probes distances

greater than the string length. As the fuzzy sphere radius starts approaching ls we an-

ticipate that higher order terms in Qij (and in the square root of det(Q) ) would need

to be kept for consistency. This approximation has been used by other authors who have

investigated fuzzy spheres in the nonabelian DBI theory, see for example the second paper

in [8].

In order to simplify the expression to something more useful we need to expand the

commutator terms. The simplest ansatz possible is to make the transverse scalars all

commuting, however it has been shown that the system will be unstable since it will not

be at its minimal energy. This can be easily be verified by expanding out the last term in

the action [8]. Instead we opt for the more familiar SU(2) ansatz which parameterises a
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non-commutative object known as a fuzzy 2-sphere. The definition of which can be seen

via

φi = R(t)T i, i = 1, 2, 3 (3.2)

where the T i are an N × N matrix representation of the generators of the SU(2) algebra.

[T i, T j ] = 2iεijkT
k (3.3)

The remaining fields φi, i = 4, 5 . . . are set to zero or more generally to constant

matrices that commute with the SU(2) generators. Let us make some comments concerning

the generality and validity of this ’round’fuzzy sphere ansatz in (3.2). Our ansatz sets the

nonabelian transverse fields φi either to be SU(2) valued fields (the fuzzy sphere ansatz)

or to constant commuting matrices. The latter are taken to commute with both the SU(2)

generators and themselves. These latter fields have no potential because of they commute

with everything, so the assumption that they are constant is consistent with their equations

of motion; they simply parameterise flat directions of the theory. There is a related issue of

what is the most general time dependent configuration which is very interesting question.

For example one could imagine that there will be non-spherical fluctuations because there

are a tidal effects in the direction of motion in the curved backgrounds which should

alter the geometry of the fuzzy sphere maybe leading to a fuzzy ’egg’ . But these are

deformations of the spherical solution so we would argue that in the first instance one

should study the latter first and then investigate fluctations on about this solution. There

are other known fuzzy geometries with different topology such as fuzzy cylinders which one

could also investigate in the context of curved backgrounds but again this is outside the

remit of our paper which focusses on spherical solutions.

To check that our speherical ansatz is at least a consistent one we consider the equations

of motion for the nonabelian fields φi in a general curved background. Let us consider a

background metric of the form

ds2 = −g00dt2 + gxxdxadxbδab + gzzdzidzjδij (3.4)

where a, b run over the q worldvolume directions and i, j are transverse directions to the

source. This background could obviously be generated by a stack of coincident branes, or

something more exotic. The non-Abelian action then take sthe form

S = −τ ′
p

∫

dp′+1ζSTr

(

e−φ
√

gp
xxg00(1 − λ2gzzg

−1
00 φ̇iφ̇jδij)

√

1 − 1

2
λ2g2

zz[φ
i, φj ][φj , φi]

)

(3.5)

Note that restricting the metric components g00 = gxx = g−1
zz = H1/2 the above action

reproduces that in (3.1) above. Now working to leading order in λ the equations of motion

for φi are
d

dt
(e−2φgp/2

xx g
−1/2
00 gzzφ̇i) = g2

zz[φ
i, [φj , φi]] (3.6)

Now consider the more general ansatz for φi

φi = R(t)T i + β(t)Y i, i = 1, 2, 3 (3.7)

– 6 –
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where the matrices Y i represent some non-spherical orthogonal directions to the SU(2)

generators T i. Without loss of generality we can assume that Tr(T iY i) = 0. Using this

property one can easily obtain equations of motion for R(t) and β(t) by substituting the

above ansatz into (3.6). In the limit when we send β(t) = 0 (ie our spherical fuzzy sphere

ansatz) the equation of motion for β(t) becomes

d

dt
(e−2φgp/2

xx g
−1/2
00 gzzβ̇) =

1

Tr(Y iY j)
g2
zzTr([T i, [T j , T i]]Y j) (3.8)

Due to the orthogonality of T i and Y j the second trace factor in (3.8) vanishes so e−2φg
p/2
xx

g
−1/2
00 gzzβ̇ is a constant. We can choose this constant to be zero and hence β̇ also vanishes.

It is therefore consistent to set β(t) = 0 at the outset as in our spherical fuzzy sphere

ansatz (3.2).

Returning then to our spherical fuzzy sphere ansatz for φi, as argued in [8], we can

choose the generators to be the fundamental representation of the algebra since this will

correspond to the minimum energy configuration. The physical radius of the fuzzy sphere

is given by

r2 =
λ2

N
Tr(φiφjδij) = λ2R(t)2C, (3.9)

where C is the quadratic Casimir of the representation defined by

3
∑

i

(T i)2 = C1N , (3.10)

and 1N is the N ×N identity matrix. We also note that for the irreducible representation,

C = N2 − 1, which can be approximated by N2 in the large N limit. In our analysis we

will only be interested in this limit, as the case of finite N has additional complications

due to the prescription of the symmetrized trace. Combining all this information allows us

to write the final form of the action as

S = −τp′

∫

dp′+1ζNH−1
√

(1 − Hλ2Ṙ2C)(1 + 4λ2HCR4) − τp′

∫

dp′ζdt
qN

H
. (3.11)

Now, from the definition of the harmonic function, we see that the large r limit corresponds

to Minkowski space, and the non-Abelian action reduces to the usual form for flat space [8,

18, 11] We can now calculate the associated canonical momentum and energy density from

the action, which are defined as follows

Π̃ =
Π

τ ′
p

= Nλ2ṘC

√

(1 + 4λ2HCR4)

(1 − Hλ2Ṙ2C)
(3.12)

Ẽ =
E

τ ′
p

=
N

H

√

(1 + 4λ2CHR4)

(1 − Hλ2Ṙ2C)
− qN

H
, (3.13)

where the momentum is the derivative of the Lagrangian with respect to Ṙ, and the energy

is constructed via Legendre transform. In addition we have divided out by a factor of
∫

dp′ζ

– 7 –
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which loosely corresponds to the ’volume’ of each Dp′-brane. To construct the potential

energy we will find it useful to switch to the Hamiltonian formalism, where we write the

energy in terms of the conjugate variables.

Ẽ =

√

N2H−2(1 + 4λ2CHR4) +
Π̃2

Hλ2C
− qN

H
, (3.14)

which allows us to define the non-Abelian static potential via Veff = Ẽ(Π̃ = 0).

Veff = NH−1
(

√

1 + 4λ2CHR4 − q
)

, (3.15)

In order to consider the collapse of the fuzzy sphere, it will be more convenient to work in

term of the physical radius r rather than R. In which case the potential can be written

Veff = NH−1

(
√

1 +
4Hr4

λ2C
− q

)

, (3.16)

which is the gravitational potential generated by the background branes located at r = 0.

It is useful to compare this result with that from the Abelian case, which was deter-

mined to be [1]

V abelian = N
(1 − q)

H
, (3.17)

when we have N probe branes separated by a distance larger than the string length. Clearly

we see that there is an additional term present arising from the non-Abelian nature of the

effective action. Naively one might have assumed that the potential for N branes would

be just N times that for a single brane at lowest order. However, as we can see there is

an extra term corresponding to the additional energy of the fuzzy sphere (or the vacuum

energy of the non-commutative spacetime). It is instructive to consider the behaviour of

the potential in the different regions of spacetime, but first we must ensure that there are

no limiting constraints to be imposed on the configuration. Solving the energy equation

for ṙ, we obtain the following equation of motion which in turn will yield a constraint on

the dynamics.

ṙ2 =
1

H

(

1 − N2

(ẼH + qN)2

{

1 +
4Hr4

λ2C

})

. (3.18)

Since this equation is non-negative we see that the following constraint must be satisfied,

when we set the Chern-Simons part to zero,

1 ≥ N2

Ẽ2H2

{

1 +
4Hr4

λ2C

}

.

We consider what happens when we are in the near horizon geometry, as the constraint

reduces to the following expression

1 ≥ N2

Ẽ2

(

r7−p

kp

)2 {

1 +
4kpr

p−3

λ2C

}

, (3.19)

– 8 –
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For p ≥ 3 the leading term in the expression is dominant and so we are effectively left with

the following constraint

1 ≥ N2

Ẽ2

(

r7−p

kp

)2

. (3.20)

The supergravity solution implies that the term in parenthesis is already vanishingly small,

which in turn implies that the ratio N/Ẽ can take a wide range of values and still satisfy

this constraint. We must emphasise at this point that the classical analysis may break

down as the fuzzy sphere collapses toward zero size, since the back reaction upon the

source branes will no longer be negligible and there will doubtless be correction terms to

the energy in this case which will invalidate this constraint. Furthermore there will also

be the problem of open string tachyon modes, which will arise as the branes approach

distances comparable to the string length. If we now consider the limiting case where

p < 3, the constraint equation becomes

1 ≥ 4

Ẽ2

(

r7−p

kp

)

r4

λ2
, (3.21)

when we take the large N limit. This solution has explicit dependence upon the ratio of the

radius to the string length, which we would expect to be larger than unity in order for us to

have any faith in the effective field theory description. This implies that the energy density

can again be reasonably arbitrary as the supergravity constraint implies that the other

term is already vanishingly small. To be safe we will assume that Ẽ À N in what follows,

as there is no ambiguity in the constraints if this is fulfilled. Interestingly if we reinstate

the Chern-Simons contribution we find, to leading order, that the same constraints apply.

We now turn out attention to the large r region ie flat space. In the Abelian case there

are no constraints to be imposed, and so the probe branes can move to an infinitely large

distance from the sources. In the non-Abelian case however, we can obtain an equation for

the maximum radius of the fuzzy sphere which can be written

r4
max =

λ2CẼ2

4N2

(

1 +
2qN

Ẽ

)

, (3.22)

from which we deduce that the orientation of the Dp′-branes plays the role of a small

correction term provided we take our Ẽ > N approximation. This maximal distance

represents the limit of our effective action, and it is likely that higher order correction

terms will allow us to consider limits such as rmax → ∞. We note, however, that this

maximal distance is dependent upon the energy of the probe branes, and that by tuning

the energy we can effectively consider an unbounded solution in Minkowski space. If we

take the large N limit and neglect the Chern-Simons part, this equation simplifies to

rmax =

√

Ẽλ

2

(

1 +
qN

2Ẽ
+ · · ·

)

=

√

Ẽπl2s

(

1 +
qN

2Ẽ
+ · · ·

)

(3.23)

which shows that the size of the fuzzy sphere is only dependent upon the energy of the

solution. This is what we expect from our knowledge of dielectric branes [8, 15] and Giant
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Gravitons [16, 17], which are expanding brane solutions sourced by non-trivial background

fields. Even though we are only looking at a relatively simple example, we would expect

to find some similarities between these problems.

Armed with this our knowledge from the constraints we may proceed to investigate

the behaviour of the effective potential. A quick calculation shows that the potential has

no turning point, therefore we shouldn’t expect any stable bound states between the fuzzy

sphere and the background branes. It will be easier to analyse the behaviour of the solution

in the two regions of spacetime, to learn more about the dynamics. For vanishing r we find

the potential becomes

Veff ∼ Nr7−p

kp

(
√

1 +
4kprp−3

λ2C
− q

)

. (3.24)

Now for p ≥ 3, and sufficiently small radial distance, we may again ignore the radial

contribution in the square root, provided that

r ¿
(

λ2C

4kp

)3−p

,

and we find this reduces to

Veff ∼ Nr7−p

kp
(1 − q), (3.25)

which we can see is identically zero if q = 1, and is attractive if q = −1. This is the same

behaviour as seen for arbitrary p in the Abelian case, and implies that the configuration

can become BPS at sufficiently small distances. However the size of this stabilisation radius

is likely to be smaller than the string length, where our effective action is not valid. Now

if we consider p < 3 we find the potential is given by

Veff ∼ Nr7−p

kp

(

√

4kp

λ2Cr3−p
− q

)

. (3.26)

which is attractive for all valid p in this region. Therefore we see that to leading order, the

probe branes are always gravitationally attracted toward the source branes.

In the large r limit, remembering that there is a maximum radius for the fuzzy sphere

solution to hold, the potential becomes.

Veff ∼ N

(
√

4r4

λ2C
− q

)

, (3.27)

which we see will tend to a positive constant depending upon the exact size of the maximum

radius. If we substitute our solution (3.22) into the potential, we find

Veff ∼ Ẽ

√

1 +
2Nq

Ẽ
− qN ∼ Ẽ, (3.28)

where we have explicitly expanded out the square root term using our energy constraints.

Thus the potential energy is effectively the energy density at large r. Before proceeding to

solve (3.18), it is worth mentioning that the ’velocity’ of the collapse is a decreasing function
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of time. This is in stark contrast to the fuzzy sphere in a flat Minkowski background, where

we find that at small r, the velocity is a substantial fraction of the speed of light. The

curved geometry of spacetime in the near horizon limit acts in such a way as to slow the

rate of collapse, in fact for an observer on the background branes it would take an infinite

amount of time for the sphere to reach zero size. Only if we switch to conformal time will

we see a finite time solution. This is an example of the usual red shift problem in General

Relativity.

In the large r region, we see that the harmonic function becomes unity and thus we

would expect to find the usual equations of motion for collapsing fuzzy spheres in flat space.

Using the fact that the energy is conserved in time, we can integrate the equation of motion

to obtain the general form of the radial collapse in terms of Jacobi elliptic functions. By

carefully selecting our initial value of r0 to be

r4
0 =

λ2CẼ

4N

(

Ẽ

N
+ 2q

)

, (3.29)

we find that the equation of motion is given by

r(t) = ±r0JacobiCN



2

√

2

C

r0t
√

1 + 4r0

λ2C

,
1√
2



 (3.30)

The form of this solution has been extensively discussed in [18, 11], and so we will not say

much about it here. In this instance we know that the regime of validity for the solution is

r7−p À kp and so we find a simple monotonically expanding/contracting solution without

collapse toward zero size. Thus the effective action should remain a valid description of the

dynamics, and we do not have to worry about the physical nature of the coordinate system

being employed [11]. Interestingly this solution appears to be valid for arbitrary values of

p since all the p dependence arises in the form of the harmonic function, and gives rise to

another example of the so called p-brane democracy. The form of the equation of motion

makes it difficult to obtain smooth analytic solutions interpolating between flat space and

the near horizon geometry. As a result we must regard the two regions as being distinct

and choose boundary conditions such that it is possible to match the solutions by hand.

Turning our attention to the throat solutions, we see that the complicated form of the

equation of motion makes analytic solutions difficult to obtain. One case where we can

make some progress is the p = 3 background, as the ’fuzzy’ term loses all radial dependence

in this instance. The solution is given in terms of a hypergeometric function, and it thus

difficult to invert

t − t0 ∼ ±
√

k3

r
2F1

(

1

2
,
−1

8
,
7

8
,
N2r8

Ẽ2k2
3

{

1 +
4k3

λ2C

}

)

. (3.31)

In the limit that the sphere collapses toward zero size, we can expand the hypergeometric

function using the well known series expansion

t − t0 ∼ ±
√

k3

r

(

1 − N2r8

14Ẽ2k2
3

{

1 +
4k3

λ2C

}

)

, (3.32)
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which implies that at very late times the solution behaves as

r ∼ ±
√

k3

t − t0
. (3.33)

The collapse of the sphere is described by the positive branch of the above solution, and is in

fact an example of a simple power law solution. This power law behaviour can be explicitly

seen at late times by assuming that the dominant contribution to the denominator of (3.18)

is unity. The resulting integral is trivial to perform and we obtain the general late time

solution (dropping constants of integration)

r ∼ ±
(

(p − 5)(t − t0)

2
√

kp

)2/(p−5)

, (3.34)

the solution for p = 5 must be calculated separately, but is simply proportional to an

exponential

r ∼ exp

(

± t√
k5

)

. (3.35)

Thus we have shown that the solutions obey simple power law equations of motion as

r → 0. Of course, we must be careful in our interpretation of these results as we expect

correction terms to affect the validity of our effective action as the fuzzy sphere collapses.

We can solve the equations of motion numerically, which gives us some indication of

the late time dynamics as measured by observers on the source branes. For example, figure

1 shows the numerical solution for D0 and D̄0 branes. In order to generate this solution

we took ls = 1, gs = 0.1, N = 100, Ẽ = 200 and M = 1000, whilst retaining the full form

of the harmonic function but taking the large N limit. Although the parameter space of

solutions is large, we expect the numerical solutions to be representative of more general

behaviour. In fact we investigated the dynamics for various ranges of energy, and found

approximately the same solutions with all the solution curves collapsing onto one another

at very small distances. The analytic solution clearly shows that the radius collapses

rapidly when the metric is approximately flat, but decelerates as the sphere enters the near

horizon geometry. We expect that our solutions will break down as the probes near the

source branes, although it is useful to recall that D0-branes can probe distances smaller

than the string length and so the solution may be valid for some time. The plot shows

that the brane and anti-brane follow similar trajectories as they cross into the near horizon

region and are thus indistinguishable. Our analysis of the potential suggests that it should

vanish for the D0-brane solution as r → 0. Clearly our plot shows that this must happen

at a distance smaller than the string scale.

Figure 2 shows the solutions for the D4 and D5-brane backgrounds using the same

parameters, but ignoring the Chern-Simons term. The five brane solution indeed tends

toward an exponential at late times as expected from our simplified analytic solution.

Figure 3 shows the solution for the D3 and D̄3-branes. In this instance we can clearly

see that the fuzzy sphere associated with the D3 solution collapses faster than the D̄3 solu-

tion when they are in flat space. This is because the D3-branes are more strongly attracted
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Figure 1: Numerical solution to the equations of motion for the D0-brane background.

Figure 2: Solutions for D4 and D5 brane backgrounds, ignoring the Chern-Simons coupling.

to the sources than the D̄3-branes. However as they cross into the near horizon geometry,

both spheres tend to the same radius as the Wess-Zumino term becomes negligible which

accounts for the similarity in their dynamics.

The difficulty in analytically solving the integral equation of motion is related to the

fact that it describes curves on hyper-elliptic Riemann surfaces, with the infinitesimal time

playing the role of a holomorphic differential. The velocity and the radius can each be
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Figure 3: Solutions for the fuzzy sphere sourced by D3 and anti D3-branes.

regarded as two complex variables related by a single constraint. We can use the simplified

Riemann Hurwitz formula to calculate the genus, g, of the underlying surface

g =
1

2
(B − 2), (3.36)

where B refers to the number of branch points of our solution. It is fairly straight forward

to see that the p = 6 and p = 5 cases correspond to genus 2 surfaces, p = 3, 4 give rise to

genus 3 surfaces, p = 2, 1 are genus 5 surfaces and p = 0 defines a genus 7 surface. Thus

as we decrease the dimensionality of the background branes, we find surfaces of higher

and higher genus. Obviously this leads to the difficulty in obtaining an analytic solution

to the equation of motion. Even if we include the Chen-Simons term in the equation of

motion, this doesn’t modify the number of branch points. As in [11] it may be possible to

reduce the integral for the genus 3 and 5 surfaces into integrals over products of genus 1

surfaces using the special symmetries present. The solution in flat space corresponds to a

genus 1 surface, which is why we find an explicit solution to the equation of motion. This

suggests that the Riemann surface describing the curved backgrounds is actually of high

genus, with the branch points on the complex plane being totally unresolvable when the

cycles are large.

3.2 Dynamics in the p 6= p′ case.

We now turn our attention to the more general case where p 6= p′. However, as we are

only looking at the leading order terms in the action we find that there is no Chern-Simons

term except for the p = 6, p′ = 0 case. But for the purpose of this note, we will neglect

this contribution. The action in this instance is a simple extension of (3.11) and can be
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written as

S = −τp′

∫

dp′+1ζNH(p−p′−4)/4
√

(1 + 4Hλ2CR4)(1 − Hλ2CṘ2), (3.37)

which clearly reduces to the expression in the previous section when taking the p = p′

limit. We will again divide out by the ’mass’ of the brane to find a closed expression for

the canonical momentum , which turns out to be

Π̃ = NH(p−p′−4)/4λ2CṘ

√

1 + 4Hλ2CR4

1 − Hλ2CṘ2
, (3.38)

and the corresponding energy is obtained via Legendre transformation in the usual manner.

Ẽ = NH(p−p′−4)/4

√

1 + 4Hλ2CR4

1 − Hλ2CṘ2
(3.39)

=

√

N2H(p−p′−4)/2(1 + 4Hλ2CR4) +
Π̃2

Hλ2C
,

Following results from the previous section we define the effective potential to be

Veff = NH(p−p′−4)/4

√

1 +
4Hr4

λ2C
, (3.40)

which is clearly the general extension of (3.15) when there is no Chern-Simons coupling

term. Interestingly the extra energy due to the fuzzy sphere actually breaks the supersym-

metry in this case. Using the conservation of energy we also have a modified constraint

condition

1 ≥ N2H(p−p′−4)/2

Ẽ2

(

1 +
4Hr4

λ2C

)

. (3.41)

In the near horizon geometry we see that the r.h.s. blows up as as the radius tends to zero

when p − p′ > 4 which, because of the dimensionality of the branes, implies that for the

p = 6, p′ = 0 case the energy must go to infinity as the fuzzy sphere collapses in order to

satisfy the constraint. All of the other solutions are satisfied for arbitrary energy in this

limit. This tells us that the D6 − D0 solution will not collapse to zero size, instead it will

be energetically favourable for the fuzzy sphere to expand in the near horizon geometry. In

the large r limit we again expect there to be a maximum size for the fuzzy sphere solution,

which is given by (3.23) when we take the large N limit.

By analysing the behaviour of the effective potential, we should get a general under-

standing of the dynamics of the fuzzy sphere as the probe branes are attracted to the

source branes. In general we see that the potential is always attractive, implying that the

fuzzy sphere will eventually collapse down toward zero size. The cases where this isn’t true

are for p = 6, p′ = 0 which has a repulsive potential at small radius [19], exactly as we

would expect from energy considerations. We will have more to say about the D6 − D0

configuration in a later section as we expected it to be related to the non-Abelian extension

of the Quantum Hall soliton. The other case where the potential does not vanish is when
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p−p′ = 4, corresponding to the cases p = 6, p′ = 2; p = 5, p′ = 1 and p = 4, p′ = 0. In these

cases we see that the potential tends to N with vanishing radius. Again this should be

expected as the branes are all parallel and this is precisely the supersymmetry preserving

condition in the Abelian theory [1], however this may well occur at distances beyond the

regime of validity of our effective theory.

Solving the equations of motion in the general case is far from trivial, as the integral

equation describes surfaces of varying genus. For completeness we have written the genus

associated with all the possible values of p, p′ in our analysis. Note that as the factor p−p′

increases, the genus of the surface associated with the solution decreases. For example in

the p − p′ = 4 case (not including p = 6), we see that the Riemann surface becomes a

simple two-sphere. This is interesting as we know that this is exactly the supersymmetry

preserving condition in the Abelian theory [1], and a quick calculation verifies that the

Abelian equation also yields a genus 0 surface even in the p = 6, p′ = 2 case. This

poses the question of whether there is some deeper connection between the preservation

of supersymmetry and the underlying Riemannian geometry. An example solution can be

found in the p = 4, p′ = 0 case which will be valid when r satisfies the following constraint,

λ2Ẽ2 À 4k4r. Upon integration we find

r ∼ r0 ±
4Ẽk4

(Ẽ2 − N2)t2
, (3.42)

where we must take the negative branch of the solution to approximate the collapsing fuzzy

sphere.

p 6 5 4 3 2 1 0

p′ 6 4 2 0 5 3 1 4 2 0 3 1 2 0 1 0

genus 2 2 1 1 2 1 0 3 2 0 3 1 5 2 5 7

3.3 Corrections from the symmetrized trace.

In our work so far we have only considered the leading order Lagrangian, and neglected any

1/N corrections. However, these terms can be calculated allowing corrections to the effec-

tive potential to be found. We remind the reader that to lowest order, we have calculated

the energy density to be

Ẽ =
δL
δṘ

Ṙ − L.

Based upon arguments in [18] we know that the corrections to next order are given by

Ẽ1 =

(

1 − 2

3
C

∂2

∂C2

)

Ẽ, (3.43)

where we have dropped all the Chern-Simons terms to make things clearer. We differ-

entiate our expression for Ẽ in order to find the next order corrections to the effective

potential. Note that for static BPS configurations such as the D1 − D3 intersection, all

the symmetrized trace correction terms are zero. We don’t anticipate the same situation

occurring here because the Chern-Simons coupling is independent of C and will drop out
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when we differentiate the Lagrangian. Since it is this coupling which (in the Abelian case

at least) preserves the bulk supersymmetries, we expect that higher order corrections will

not be BPS configurations, and so we will find non-zero correction terms to all orders. Our

calculation for the general case, gives us the first order correction to the potential

∆Veff =
8NH(p−p′+4)/4r8

3λ4C3
(

1 + 4Hr4

λ2C

)3/2
, (3.44)

where we have made use of the near horizon approximation. Once more we find that

the solution depends heavily upon the dimensionality of the branes involved. Firstly, we

consider the case when p ≥ 3. In this instance the correction term becomes;

∆V ∼ 8Nr8b

3λ4C3

(

1

r7−p

)(p−p′+4)/4

. (3.45)

Where we have introduced b = k(p−p′+4)/4 for simplicity. In general the factor of p − p′

can only take the integral values of 6, 4, 2 or 0, and so it is easily noted that the potential

tends to zero as r → 0 for all values of p and p′ in this particular range. If we move on

to consider the case where p < 3 then p − p′ is limited to be either 2 or 0. The correction

term in this instance reduces to

∆V ∼ 8Nr8b

3λ4C3

(

1

r7−p

)(p−p′+4)/4 (

λ2C

4kprp−3

)3/2

(3.46)

This potential again tends to zero with r for all values of p and p′, which is in agreement

with our general expectations from the behaviour of the leading order term. Thus the

correction doesn’t alter the overall dynamics of the fuzzy sphere, and we don’t find any

bounce solutions. However it should be noted that if we relax our throat approximation

and look at large r, we would expect to find differing behaviour. For example [18] showed

that there are bounce solutions for the D0-solution in flat Minkowski space when the 1/N

sub leading order terms are taken into account. It is well known that D0-branes may

probe distances much smaller than the string length [20], however the curved backgrounds

we have been studying in this section appear to impose constraints upon this behaviour.

3.4 Remarks on the D6-D0 solution.

In this section we will briefly comment on the p = 6, p′ = 0 solution as there is a similarity

with the Quantum Hall Soliton (QHS), which we will briefly introduce below.

The stringy QHS was introduced [19] as a way of establishing the link between con-

densed matter physics and string theory. To construct the QHS, we imagine a background

of k coincident D6-branes with k strings emerging from them. The transverse space can

be parameterised simply by R × S
2, and we wrap a D2-brane over the S

2. However it is

known that this configuration is unstable, and so we are forced to introduce ND0-branes,

which are dissolved into the D2-brane world volume. Since it is well known that D6 and

D0-branes repel each other (due to the energy becoming infinite at small distances), this
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stabilises the QHS. The world volume of the spherical D2-brane, in this instance, becomes

the surface where the quantum hall fluid lives.

This is a purely Abelian theory in terms of the D2 picture, however our Non-Abelian

construction can provide information on the dual picture. This is because we can consider

ND0-branes in the supergravity background of M coincident D6-branes. We expect that

the fuzzy sphere ansatz will play the role of the D2-brane with flux on the Abelian side,

furthermore we anticipate that the D0-branes can be regarded as being the endpoints of

fundamental strings which start on the background D6-branes. The only difference is that

we are neglecting the open string contributions from the background branes to the probe

branes.

We have already seen that the effective potential for this (bosonic) configuration can

be written as

V = N
√

H

√

1 +
4Hr4

λ2c
, (3.47)

where the harmonic function, H, can be approximated in the near horizon limit by

H ≈ Mgsls
2r

.

We now determine, by differentiating the potential, that there is a minimum at the distance

rmin =

(

π2l3sN
2

Mgs

)1/3

, (3.48)

where we have explicitly employed the use of the large N limit. This is exactly the same

result that was obtained for the stability of the spherical D2-brane with flux in terms of the

gravitational Myers effect effect [21]. We wish to compare this result to the one calculated

in [19]. In that paper they used a coordinate rescaling to simplify the initial background

metric. The scaling is given by

r = ρ

(

Mgs

2

)−1/3

,

and consequently the equation for the stabilisation radius is given by

ρ∗ =
(Nπ)2/3ls

2
. (3.49)

Performing the same rescaling in our Non-Abelian dual picture gives the result

ρ∗ =
(Nπ)2/3ls

21/3
(3.50)

which is almost identical to the Abelian theory. In fact the discrepancy between the two

radii is due to the contribution from the k strings on the Abelian side, which has been

neglected in our analysis. In fact the string contribution alters the stabilization radius by a

factor of 2−2/3. If we reconstruct the QHS, but neglect the stringy contribution and allow

for time dependent radial solutions we obtain the following action

S = −τ2

∫

d3ζHr2 sin(θ)

√

(1 − Hṙ2)

(

1 +
λ2N2

4Hr4

)

, (3.51)
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where we use the usual spherical coordinates on the D2-brane worldvolume and the flux

on the brane is given by

Fθφ =
N sin(θ)

2
, (3.52)

which satisfies the usual quantization conditions. For a more rigorous explanation of the

derivation we refer the reader to [19] for more details. We can integrate out the angular

dependence to find an exact expression for the Lagrangian

L = −τ24πr2H

√

(1 − Hṙ2)

(

1 +
λ2N2

4Hr4

)

. (3.53)

Using this we can easily construct the static potential for the Abelian theory in the near

horizon geometry, which we find to be

V =
kr

λ

√

1 +
λ2N2

2kgslsr3
. (3.54)

Although this appears to be different from the non-Abelian potential, they are in fact

identical as can be verified with a simple expansion. Thus the theories are in fact dual to

one another, which we can further exhibit by analysing the equations of motion for the

radion fields. Using subscripts A and N to represent the two theories, we find the result

ṙ2
A =

1

H

(

1 − 16π2τ2
2 H2r4

E2

{

1 +
λ2N2

4Hr4

})

, (3.55)

ṙ2
N =

1

H

(

1 − τ2
0 N2H

E2

{

1 +
4Hr4

λ2C

})

.

If we take the large N limit and carefully expand these equations we see that they are

identical. This was noted [18] for the case of a fuzzy sphere in flat space, and as expected

this duality continues to hold in a curved geometry. On the Abelian side we find an

explicit example of the gravitational dielectric effect, whilst on the non-Abelian side we

have the gravitational Myers effect. It would be useful to include the terms coming from

the strings in our work, as this would be the dual of the QHS, however this is expected

to be complicated as the strings are charged under U(M) on one end and U(N) on the

other. The corresponding trace over the Chan-Paton factors will be expected to yield

an extra term in the DBI forcing the fuzzy sphere to stabilise at a smaller radius due to

the tension of the strings. As a further remark, we should note that this duality only

holds for the p = 6, p′ = 0 case. We could consider a different background source such

as D4, D2 or D0-branes, with the D2-wrapped over a transverse S
2 whilst the remaining

transverse coordinated are set to zero. Unfortunately the corresponding solutions do not

map across to the non-Abelian construction where we would have D0-branes probing each

of these background solutions. This is because we are losing information about the theory

by setting some of the Abelian degrees of freedom to zero.

It is interesting to examine the stability of our solution with regards to D0-brane

emission. It was argued for the QHS that there is an energy barrier proportional to N ,
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preventing the tunnelling of D0-branes out of the D2 brane. In fact it requires energy to

be out into the system to remove the D0-brane. Therefore the QHS appears to be stable

with respect to particle emission.3

The potential at the stable radius in our dual picture can be written explicitly as

V = N

√

(Mgs)4/3

2(Nπ)2/3

√

1 +
N2

2C
, (3.56)

where we are using the dimensionless potential obtained from Ẽ. We now revert to proper

time as measured by an observer on the fuzzy sphere, which allows us to re-write the

minimised potential with respect to proper time

VT (N) =

√

N

π

Mgs

23/4

√

1 +
N2

2C
. (3.57)

Now imagine that the soliton emits a single D0-brane into the bulk, the change in the

potential - to leading order in 1/N , and taking the large N limit - can be approximated by

VT (N) − VT (N − 1) ∼
√

3

Nπ
Mgs. (3.58)

We now need to compare this with the potential energy of a single D0-brane attached to

a fuzzy sphere located at the stabilisation radius. Although our effective action is valid as

a large N expansion, we can use it to determine the potential for a single brane provided

that we neglect the back reaction terms between brane and fuzzy sphere. By adding this

contribution to the one calculated in the previous line we see that

Vtot ∼
Mgs√

π

(

√

3

N
+

1√
2

)

, (3.59)

which is larger than the potential of the stable fuzzy sphere. Thus we conclude that the

solution appears to be stable with regard to emission. This gives us an estimate of the

binding energy of the D0-branes in the near horizon region, which we interpret as the

energy barrier needed for quantum tunnelling

Ebinding ∼ νgs

√
N, (3.60)

where we have made use of the ratio ν = M/N to simplify the result. In the QHS picture

this corresponds to the definition of the filling ratio. Clearly the barrier is proportional to

N , thus in the large N limit we would expect the fuzzy sphere to be stable.

The supergravity picture of this case is then the following. If the fuzzy sphere is

initially large, then the metric is approximately Minkowski and we have our usual collapsing

3 [19] also noted that there could be possible nucleation of the D2-brane causing another D2 brane to

appear inside the original one. Although we can consider multiple fuzzy spheres by selecting an ansatz

which is a reducible representation, this does not correspond to the picture on the Abelian side. It would

be certainly interesting to consider a non-Abelian description of this.
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solution [18] with velocity approaching that of light. As the D0-branes enter the near

horizon geometry they decelerate (from the D6 viewpoint) until they oscillate around the

minimum of the potential, eventually forming a bound state at rmin. If on the other

hand, the fuzzy sphere is initially small, then the gravitational dielectric effect forces the

configuration to expand until it reaches the stabilisation radius - at which point it settles

into its bound state after oscillation.

4. Inclusion of angular momentum

In the Abelian case, the inclusion of angular momentum terms in the action is trivial since

all the coordinates commute. This will clearly not be the case in the Non-Abelian version,

and so we must choose a specific ansatz. A fuzzy cylinder ansatz was introduced in [22],

which was able to rotate about three independent axes. However, this ansatz proves to be

restrictive on the dimensionality of the background brane solutions limiting them to p ≤ 3,

although it may be useful in describing dual versions of supertubes [23] and we will have a

closer look at it in the next section. Instead we choose a different ansatz corresponding to

rotation in the φ6 − φ7 plane,

φ6 = R(t) cos(θ)T3,

φ7 = R(t) sin(θ)T3,

φ8 = R(t)T1,

φ9 = R(t)T2. (4.1)

This means that the resulting action will only be valid for p < 6, and so we will not be able

to consider rotation in the gravitational Myers effect picture. The action for this particular

ansatz can be calculated, and we find

S = −τp′

∫

dp′+1ζ

N
∑

j=0

NH(p−p′−4)/4
√

(1 + 4Hλ2CR4)(1 − Hλ2CṘ2 − Hλ2R2θ̇2λ2
j).

(4.2)

where λj is the jth eigenvalue of the matrix (T3)
2 (using a matrix representation for the

diagonal generator). If we expand the action out to leading order this enables us to isolate

the λj dependence and we can perform the sum to obtain

N
∑

j=0

λ2
j =

N

12
(N2 − 1) =

CN

12
. (4.3)

In general, the inclusion of angular momentum for the fuzzy sphere is non-trivial. If we

employ a convention where the subscript on the λ implies summation over that variable

then we find the exact solution for the static potential in physical radius is given by

Veff =
NH(p−p′−4)/4

√

1 − Hλ2R2θ̇2λ2
j

√

1 +
4Hr4

λ2C

(

HNr2θ̇2

12
+

√

1 − Hλ2R2θ̇2λ2
k

√

1 − Hλ2R2θ̇2λ2
j

)

,

(4.4)
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where θ̇ corresponds to the angular velocity of the fuzzy sphere. By setting this term to zero

we recover the result for the purely radial collapse, as we would anticipate. Even though

we cannot find a closed form solution for the potential we can still make some comments

about the dynamics of the fuzzy sphere. Interestingly we expect that the potential will

vanish in the r → 0 limit, as the only case where there is the possibility of a bound state

is when p − p′ > 4 corresponding to the p = 6, p′ = 0 case we investigated in the previous

section. Unfortunately our choice of ansatz doesn’t allow for this to be investigated here.

This tells us that the angular momentum term cannot counteract the gravitational force

exerted by the source branes, and the fuzzy sphere will always collapse.

4.1 Alternative ansatz.

Thus far our analysis has been exact but not concise, so it is useful to consider an alternative

ansatz which allows us to incorporate angular momentum in a clear manner. Since we

require two transverse scalars to define a plane in the transverse space, and at most each

plane is parameterised by one of the generators of the representation, we are led to the

conclusion that we need six transverse scalars to introduce angular momentum. This will

place severe restriction upon the dimensionality of the branes that we can consider in our

solution. In fact we find that at most we can consider a D3-brane background. We choose

to parameterise the six transverse scalars as follows:

φ1 = R(t)cos(θ) φ2 = R(t)sin(θ)

φ3 = R(t)cos(θ) φ4 = R(t)sin(θ)

φ5 = R(t)cos(θ) φ6 = R(t)sin(θ) (4.5)

Thus we are breaking the SO(6) symmetry of the transverse space to SO(2)×SO(2)×SO(2),

and choosing the same angle θ to parameterise the three planes. This may seem a rather

restrictive ansatz, but it will actually allow us to make some progress. The action in this

case becomes

S = −τp′

∫

dp′+1ζSTr

(

H(p−p′−4)/4
√

1 − Hλ2C(Ṙ2 + R2θ̇2))(1 + 4λ2HR4C)

)

, (4.6)

with a possible Chern-Simons term, defined up to a constant factor

SCS = −τp′δ
p
p′

∫

dt
q

H
. (4.7)

Since both terms in the Born-Infeld part of the action are proportional to the identity

matrix, we find that the STr reduces to Tr to leading order in large N . Finally we obtain

S = −τp′

∫

dp′+1ζNH(p−p′−4)/4
√

(1 − Hλ2C(Ṙ2 + R2θ̇2))(1 + 4λ2HR4C). (4.8)

We can now proceed as usual by switching to the Hamiltonian formalism and writing

the canonical energy density as

Ẽ =

√

√

√

√N2H(p−p′−4)/2(1 + 4λ2CHR4) +
1

Hλ2C

(

Π̃2 +
L̃2

R2

)

. (4.9)
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Switching to the physical radius r, we find that the effective potential becomes

Veff =

√

N2H(p−p′−4)/2

(

1 +
4Hr4

λ2C

)

+
L̃2

Hr2
(4.10)

Where we must remember that this equation is only valid for p ≤ 3, and the energy density

and the angular momentum are the conserved charges If we set the angular momentum

term to zero we recover the potential for a radially collapsing solution, as we would expect.

For ease of calculation we choose to rescale the potential by a factor of N . This is possible

because there is an N2 term in the angular momentum density. The resulting non-Abelian

and Abelian potentials are written below for comparative purposes

V̄eff =

√

H(p−p′−4)/2

(

1 +
4Hr4

λ2C

)

+
L̃2

Hr2
, (4.11)

V abelian =

√

H(p−p′−4)/2 +
L̃2

Hr2
.

Simple analysis of the potential in the non-Abelian case shows that it is a monotonically

decreasing function for all valid p and p′ in this region. Therefore there is no possibility

of the formation of bound states, in the same way that there are no bound orbits in the

Abelian theory [1]. Once again it is useful to look at the equations of motion to determine

if there are any constraints to be imposed on the solution. We wish to consider a case

where the energy density and the angular momentum density are constant. Thus, we find

the following expression

ṙ2 =
1

H

(

1 − 1

Ẽ2

[

N2H(p−p′−4)/2

{

1 +
4Hr4

λ2C

}

+
L̃2

Hr2

])

. (4.12)

If we assume that the angular momentum takes some fixed, non-zero value - then we

can consider how the constraint equation is modified in the asymptotic limit of r → 0

1 ≥ 1

Ẽ2

(

4N2k
(p−p′−4)/4
p kp

λ2Cr((7−p)(p−p′−4)+6−2p)/2
+

L̃2r5−p

kp

)

. (4.13)

This appears to have a complicated dependence upon r, however because of the restrictions

from the ansatz we know that there are only two possible cases we can consider, i) p−p′ = 2

and ii) p − p′ = 0. The first case reduces the constraint to the following

1 ≥ 1

Ẽ2

(

r4 + L̃2r5−p
)

. (4.14)

It is clear that as r vanishes the contribution from the angular momentum term also van-

ishes and the energy density can be relatively arbitrary, as already discussed. The second

condition implies a similar result, however the dimensionalities of the branes involved plays

a role in determining how quickly the lead term vanishes.
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5. Non-BPS branes

It is well known that BPS branes are soliton solutions of Non-BPS branes, so it is natural

to enquire about the dynamics of these branes in various backgrounds. In this section we

will look at the action for N Non-BPS branes in the Dp-brane background and try and

study the dynamical evolution of the fuzzy sphere in this instance. This will not be as

straight forward to analyse as the BPS case [4], as there is the additional complication of

open string tachyon modes condensing on the world volume. We start with the generalised

non-Abelian action for the probes, which can be expanded to lowest order [24].

S = −τp′

∫

dp′+1xStrV (T )H(p−p′−4)/4

√

(1 − λ2Hφ̇2 − H1/2λṪ 2)(1 − λ2H

2
[φi, φj ][φj , φi]).

(5.1)

The tachyon field is dimensionless and we are assuming, like the transverse scalars, that it

is purely time dependent. This also ensures that the Chern Simons term vanishes to lowest

order when we use the static gauge. V (T ) is the potential for the tachyon field, which

describes the changing tension of each of the branes. Note that in this section we will be

using the standard form of the tachyon potential [25, 26, 3, 2, 4] where V (T ) ∝ 1/ cosh(T ).

It would be certainly be interesting to study the case of spatially dependent tachyon fields,

as their classical solutions give rise to kink-antikink solutions on the world volume [3]. We

now make use of the SU(2) ansatz, φi = R(T )T i as usual and find that the action reduces

to the form

S = −τp′

∫

dp′+1xNV (T )H(p−p′−4)/4
√

(1 − λ2CHṘ2 − λH1/2Ṫ 2)(1 + 4Hλ2CR4), (5.2)

where we have performed the symmetrized trace to bring the Casimir into the action. As

it stands this is perfectly acceptable for us to analyse the dynamics. However the presence

of the tachyon makes things difficult since it will not decouple from the equation of motion

for the radion field. It is more useful to modify this action to another equivalent form,

and investigate the dynamics by finding another conserved charge. In order to do this, we

choose to rescale the tachyon field [26, 4]

T̃√
2

= sinh

(

T√
2

)

, (5.3)

which transforms the action into

S = −τp′

∫

dp′+1x
NH(p−p′−4)/4

√
F

√

1 +
4Hr4

λ2C

√

1 − Hṙ2 − H1/2λṪ 2

F
. (5.4)

Where F now controls the behaviour of the tachyon and the changing tension of the probe

branes, which is simply

F (T ) = 1 +
T 2

2
, (5.5)

and we have also chosen to write the new tachyon field in terms of T for ease of notation.

This form of the action allows us to investigate the dynamics of the Non-BPS brane when
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the tachyon field is large [4]. At this juncture we must point out that there may be

objections to using this form of rescaling, as we are assuming that it will hold true in a

gravitating background. It is well known that there are many effective descriptions for the

tachyon field, with each one defined on a specific section of tachyon moduli space. However

as there has been little progress in constructing non-Abelian versions of these effective

actions, we must use the DBI and hope that it provides an adequate description of the

physics at late time.

It turns out that making the field redefinition will still not be enough to simplify the

problem, and so we are also forced to consider the throat geometry around the source

branes. In terms of field space definitions we are probing the large T , small r region of the

theory. We can now use the Noether method to find the charge associated with a scaling

symmetry on the brane world volume. We postulate that the fields and the time scale as

follows:.

t′ = Γαt, r′ = Γβr, T ′ = ΓγT. (5.6)

Inserting these transformations into the action yields the following constraints,

β(p − 3) = 0, α = −β, γ = −αp′. (5.7)

The first of these is the most important, since we have two possible solution branches.

Firstly we can have β = 0, which in turn leads to α = γ = 0 and so there are no field

symmetries. However the second solution gives p = 3, which implies that the scaling

variables are arbitrary. What we have found is that the symmetry on the world-volumes of

the probe branes imposes a constraint on the allowed dimensionality of the background. If

we were to allow extended transformations, for example a rescaling of the string coupling,

we find that the background constraint becomes p = 5. Only in the case where we rescale

all the fields, the string coupling and the string length can we eliminate this background

constraint. For simplicity, we will only look at the basic case in this note. The extension

to more general scaling symmetries is left for future endeavour. As the scaling variables

are arbitrary, we find it convenient to choose α = −1, thus the scalings become

t′ = Γ−1t, r′ = Γr, T ′ = Γp′T, (5.8)

and we find a representation of the conserved charge generating these transformations,

which is

D = tẼ + rΠ̃ + p′TPT , (5.9)

where Ẽ, Π̃ and PT are the canonical energy density, radial momentum and tachyon mo-

mentum respectively. Now it is useful to write the energy density in canonical form

Ẽ =

√

2N2

T 2

(

k3

r4

)−(1+p′)/2 {

1 +
4k3

λ2C

}

+
Π̃2r4

k3
+

T 2P 2
T r2

2λ
√

k3
, (5.10)

where we have written k3 to denote the constant charge of the D3-brane background. Using

this expression, we find the equations of motion for the radion and tachyon fields reduce to

ṙ =
Π̃r4

Ẽk3

, Ṫ =
T 2PT r2

2Ẽλ
√

k3

. (5.11)
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Note that in this instance, neither Π̃ or PT is a conserved charge which makes it difficult

to solve the equations of motion. However due to our world-sheet transformations we have

discovered a charge, D, that is conserved and so we can use this to simplify the equations

of motion. In order to do this we will have to consider specific decompositions of the

symmetry charge, as the general expression does not lead to simple analytic solutions.

5.1 Decomposition of charge.

Even with the existence of the conserved charge (5.9) does not allow an easy split between

the variables r and T which would allow us to solve the (5.11).4 In order to try and find

analytic solutions (even approximate ones) we need to impose further conditions on the

canonical variables in a manner consistent with the equations of motion. Let us write the

conserved scaling charge D in (5.9) as the condition

Φ = (tẼ + rΠ̃ + p′TPT − D) = 0 (5.12)

This constraint is preserved under Hamiltonian flow since it can be verified that Φ̇ =

dΦ/dt+ {H,Φ} = 0 where {, } defines the usual Poisson bracket and H is the Hamiltonian

defined in (5.10) . Now decompose Φ = Φ1 + Φ2 where

Φ1 = Ẽ1t + rΠ̃ − D1

Φ2 = Ẽ2t + p′TPT − D2 (5.13)

with Ẽ1 + Ẽ2 = Ẽ and D1 + D2 = D. If we now impose for example, the additional

constraint Φ1 = 0 (and hence Φ2 = 0 as a consequence) then this would allow us to solve

for r(t) and T (t). However we must check that this additional constraint is preserved under

Hamiltonian flow, ie that

Φ̇1 = dΦ1/dt + {H,Φ1} = 0 (5.14)

This leads to the following algebraic constraint between r and T :-

Ẽ1 − Ẽ − 2N2p′

ẼT 2

(

k3

r4

)−(1+p′)/2 {

1 +
4k3

λ2C

}

= 0 (5.15)

The case p′ = 0 is special in that the original constraint, Φ = 0, can be used to solve the r, T

system completely (see later). For now we will assume that p′ 6= 0 . Since we are considering

p′ < p = 3 we only need consider the case when p′ = 2. It’s clear from (5.15) that Ẽ1 > Ẽ

if this constraint is to be solved exactly. But one can then show an inconsistency appears

when this algebraic constraint is applied to (5.11). Thus at best we can only solve (5.15)

approximately. One such solution is to take Ẽ1 ≈ Ẽ and assume T is large. We remind the

reader that we already assumed that T is large in order to obtain the scaling symmetries

earlier. We can now go ahead and solve the r, T system of equations.

Solving for the radial equation of motion we find

1

r2
=

1

r2
0

− t

Ẽk3

(2D2 − Ẽt) (5.16)

4The only exception is the case p′ = 0 which we shall discuss later
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Now for small values of D2 the dynamics of the probe obeys a 1/t relationship. The exact

description of the dynamics will depend on the relative sizes of D2 and Ẽ. If Ẽ À D2,

then the quadratic term will be dominant. This ensures that the solution starts at some

maximal distance and tends to zero. Conversely if D2 is much larger than Ẽ, then the

linear term is dominant and this describes an expanding solution which will break down

when the supergravity constraint is no longer satisfied. However, when the two charges are

of the same order of magnitude we find a turning solution. The sphere initially expands

from t = 0 until it reaches a stationary point at t = D2/Ẽ, before collapsing toward zero

size.

Using the second constraint to solve for the tachyon momentum yields the solution to

the tachyon equation of motion

T ∼ T0 exp

(
√

k3r
2
0

4λ
f(t)

)

(5.17)

where the function f(t) is proportional to arctanh(tẼ − D2). Thus the general behaviour

of the tachyon solution is that it is an exponential function of time.

The results obtained so far have all been for the case p′ = 2. In order to determine

the dynamics of the p′ = 0 case corresponding to N coincident D-particles we see that

the tachyon dependence drops out of of the conserved charge. First, solving for the radial

equation of motion, we find the solution

1

r2
=

1

r2
0

− t

Ẽk3

(2D − tẼ) (5.18)

which is a similar solution as the one obtained in the charge decomposition above for

p′ = 2. Therefore we also expect to find a similar turning solution for the fuzzy sphere

parameterised by the time t = D/Ẽ. We have no other constraint to impose on the equation

of motion for the tachyon field, but we can write the tachyon momentum in terms of the

other canonical forms

P 2
T =

2
√

k3λ

T 2r2

(

Ẽ2 − 2r2

T 2
√

k3

{

1 +
4k3

λ2C

}

− Π̃2r4

k3

)

. (5.19)

In general we can use this solution to exactly solve for the tachyon field, however this is

extremely difficult and we will find it much more useful to find an approximate solution.

From the above equation, we see that the supergravity solution implies r4/k3 ¿ 1, and so

we can effectively neglect the contribution from the final two terms. Inserting this into the

equation of motion yields the solution

T ∼ T0 exp

(

(
√

k3

2λ

)1/2

ln

[

√

Ẽk3 − r20t(2D − tẼ) +
r0(tE − D)

√

Ẽ

])

, (5.20)

which we expect to provide a reasonable approximation as r → 0, and once again shows

the increasing exponential dependence of the tachyon field. Again the contribution from

the two charges can change the dynamics of the field, as described earlier.

– 27 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
9

The general solution for the tachyon field is expected to be background dependent [4],

however we see that in the D3-case, it is roughly exponential in all cases. The fuzzy sphere

appears to always collapse, but there is an intricate relationship between the tachyon

condensation and the radial modes which depends upon the conserved charges. When

both terms appear in the radial equation of motion we see that there can be turning

solutions, describing an initial expansion which eventually contracts within finite time.

This is a result of the tachyon condensation which decreases the tension of the branes so

that they feel a weaker gravitational attraction. However, the combination of the charges

in the tachyon solution also implies a turning point for the tachyon field and so the tension

eventually increases and the fuzzy spheres collapses - provided that the tachyon solution

still remains valid.

6. NS5-brane background

The work in the previous sections has only been concerned with coincident Dp-brane back-

grounds, but we wish to extend this to the NS5-brane background. This particular back-

ground is important for several reasons. In many cases there is an exact conformal field

theory description, allowing BCFT calculations. Secondly, there is an interesting duality

which relates six dimensional string theory on the NS5-brane world-volume (LST) [27] to

supergravity in the bulk, permitting an understanding of the dynamics in terms of defects

of the LST. Importantly for our purposes, there has been recent work on probe dynamics

in this background which has provided insights into the nature of the rolling tachyon, and

perhaps even a geometrical origin for the open string tachyon in Abelian theories. Much

of the construction of the non-Abelian theory follows a similar line to that of the D-brane

backgrounds.

We begin with the background solution for k coincident NS5-branes, given by the

usual CHS solutions [29]

ds2 = ηµνdxµdxν + H(xn)dxmdxn

e2(φ−φ0) = H(xn)

Hmnp = −εq
mnp∂qφ. (6.1)

The coincident fivebranes form an infinite throat which can be seen from the dilaton term.

We will refer to the throat geometry as the near horizon part of the bulk space-time. The

usual definitions apply as in the Dp-brane solution, with the addition of the 3-form field

strength for the Kalb-Ramond field. The harmonic function describing this background is

simply

H(xn) = 1 +
kl2s
r2

, (6.2)

where r is the physical radius given in terms of the transverse scalars, r =
√

x2
i . Note that

there is no WZ term in this solution, since the NS5-branes are not sources of Ramond-

Ramond charge. This is because the fivebrane is the magnetic dual of the fundamental

string, and as such we expect that no open strings will end on any of the k NS5-branes.
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The probe branes themselves will carry R-R charge, which we anticipate will be radiated

as the probes move in the background. This has important consequences, as we know

that the classical Abelian theory is only valid for 3 ≤ p < 5 [2] due to the emission of

closed string modes. This tells us that the DBI only describes the motion of the open

string degrees of freedom, and radiative correction terms due to the closed strings must be

studied separately. It would be a useful exercise to check if this relation also holds in the

non-Abelian theory. We also know that the background preserves different halves of the

supersymmetry algebra, therefore it is explicitly broken and we will find a gravitational

force acting on the fuzzy sphere causing it to collapse. This is also seen in the Abelian

theory of a spherical D2-brane with magnetic flux [15], which should be equivalent to our

construction of D0-branes on a fuzzy sphere.

We now insert these background solutions into our Non-Abelian action. Once again,

we expand the terms to leading order and assume that the transverse scalars are time

dependent, which will ensure that our solutions are homogeneous and thus there will be

no formation of caustics. Hence we arrive at the following form of the action

S = −τp

∫

dp+1ζSTr

(

H−1/2
√

1 − Hλ2φ̇iφ̇jδij

√

1 − 1/2λ2H2[φi, φj ][φj , φi]

)

. (6.3)

Note that the NS5-branes have a tension that goes as 1/g2
s , whilst the Dp-branes each

have tensions proportional to 1/gs, thus the five-branes are heavier in the large k limit,

however as we will be interested in the large N limit we may find there is considerable back

reaction upon the throat in the target space which may deform it substantially. However

for the purpose of this note we will ignore this effect, and simply assume that we can fine

tune the parameters such that the back reaction is negligible. The action is given by 5

S = −τp

∫

dp+1ζ
N√
H

√

(1 − Hλ2Ṙ2C)(1 + 4λ2CH2R4), (6.4)

with C being the usual quadratic Casimir of the N -dimensional representation. Switch-

ing now to physical distances, we arrive at the final form of the action

S = −τp

∫

dp+1ζ
N√
H

√

(1 − Hṙ2)

(

1 +
4H2r4

λ2C

)

, (6.5)

from which we can derive the usual canonical momenta and energy densities, where we

have explicitly divided out the ’mass’ of each brane.

Π̃ =
NHṙ√

H

√

1 +
4H2r4

λ2C

1√
1 − Hṙ2

Ẽ =
N√
H

√

1 +
4H2r4

λ2C

1√
1 − Hṙ2

. (6.6)

We solve the equation for the energy, which is conserved, to obtain the following constraint

on the dynamics of the probe branes assuming a fixed energy density

1 ≥ N2

Ẽ2H

(

1 +
4H2r4

λ2C

)

(6.7)

5For simplicity we do not include angular momentum though this can be done as in section 4
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We are going to be interested in the near horizon geometry of the fivebrane background,

and so can make the usual approximation with regards to the harmonic function. Again

we will also anticipate that there is a maximum size for the fuzzy sphere in the large r

region, since in this region the metric reduces to the metric for the Dp-brane background,

namely Minkowski space. In the throat, we find that the constraint becomes

1 ≥ N2r2

Ẽ2kl2s

(

1 +
4k2l4s
λ2C

)

(6.8)

which is automatically satisfied for the radial part since we know that H À 1 in this region.

This actually allows us to find the following constraint on the energy density the following

constraint on the energy density

Ẽ2

N2
≥ r2

kl2s

(

1 +
k2

π2C

)

. (6.9)

The supergravity solution tells us that r2/kl2s must be extremely small, and we can select

k/N to be small even when k and N are individually large, thus the last term is simply

O(1) This implies that we should take Ẽ to be larger than N to ensure that the constraint

is satisfied. Thus like the majority of the Dp-brane solutions we find that the fuzzy sphere

can collapse down toward zero size. In this background though we expect that the moving

D-branes will shed their energy, which will appear as modes living on the fivebranes, and

eventually form a (k,N) bound state in analogy to the (k, 1) state in the Abelian case. As

we have already seen, one of the main differences between the usual fuzzy sphere solutions

in flat space and those in curved background is that the velocity term decreases with the

radius. In flat space we find that the collapsing configuration approaches the speed of light

at late times and thus the 1/N corrections due to the symmetrized trace become important.

Clearly we don’t see the same behaviour in this case, in fact a six dimensional observer on

the NS5-brane world volume will record that it takes an infinite amount of time for the

fuzzy sphere to collapse to zero size 6 . This is interesting as it appears that the energy

of a collapsing fuzzy sphere in flat space is the same as an essentially static sphere in a

space-time throat, and is related to the formation of a bound state of (p, q) fivebranes [2].

In the large r region we find

1 ≥ 4N2r4

Ẽλ2C
, (6.10)

which translates into the condition that the fuzzy sphere has a maximum radius given by

rmax =

√

ẼλC1/2

2N
. (6.11)

Which, as anticipated, is the same result derived for the D-brane background. We now look

at the static potential associated with the fivebrane background. Following the convention

employed in the Abelian cases [2], we easily find that the potential can be written

Veff =
N2

Ẽ2H2

(

1 +
4H2r4

λ2C

)

− 1

H
(6.12)

6Of course if we switch to ’proper’ co-moving time coordinates τ , then the collapse will occur in finite

time [2], and an observer on the probe branes will record the velocity as tending to the speed of light.
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The interesting question is what happens in the throat, since we know that in the large r

region the potential will be a simple monotonically increasing function, which goes as r4

Veff ∼ 4r4

λ2Ẽ2
. (6.13)

Dropping the factor of unity as before, we find that as r → 0 the potential becomes

Veff ≈ N2r4

Ẽ2k2l4s

(

1 +
4k2l4s
λ2C

)

− r2

kl2s
. (6.14)

which indeed tends to zero with r, for fixed Ẽ as expected

In any case, We wish to solve the equation of motion for the probe branes in the throat.

Because the energy is conserved, the solution, up to constants of integration, is simply

1

r
=

√

N2

Ẽ2kl2S

(

1 +
4k2l4s
λ2c

)

cosh

(

t
√

kl2s

)

, (6.15)

which is actually an extension of the solution for a single probe Dp-brane in the Abelian

theory, which was shown to be [2]

1

r
=

1
√

Ẽ2kl2s − L̃2

cosh

(

t
√

kl2s

√

1 − L̃2

kl2sẼ
2

)

. (6.16)

where the effect of the angular momentum is to act as a ’braking’ term.

If we consider performing a Wick rotation of the time coordinate for the collapsing

solution we find a periodic solution in terms of a cosine function. This can be interpreted

as the collapse and subsequent bounce of the fuzzy sphere in imaginary time - although the

physical interpretation of this solution is not clear, however we expect it to approximate the

time dependent solution for Euclidean branes. This sinusoidal behaviour can also be seen

if we switch to conformal (or ’proper’) time where an observer sees that the collapse occurs

in finite time. In this case we would expect 1/r to be proportional to sin(t) [2] which

again is suggestive of a periodic collapse and expansion. However this solution would

indeed probe the non-perturbative region of the theory, and it is not clear if the corrections

(e.g quantum, 1/k and back-reaction) would admit such a solution. One further thing to

note is that using S-duality we may map this solution to that of the coincident D5-brane

background being probed by coincident D3-branes, as their actions are identical. This

agrees with our expectation that the D5-brane background yields exponential solutions at

late times.

We may enquire about the validity of the classical solution in the throat region. Using

our time dependent ansatz we see that the dilaton is also a time dependent function, in

fact for a purely radially collapsing solution we find that the dilaton behaves as

eφ =
Ngs

Ẽ

√

1 +
4k2l4s
λ2C

cosh

(

t
√

kl2s

)

. (6.17)
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Note that quantum effects can be neglected provided that eφ ¿ 1, however as we know

that Ẽ À N from our constraint equation we expect that the classical analysis will provide

an accurate description of the solution, at least for early times. This can be ’fine tuned’

for specific values of k and N so that the classical solution continues to hold at late times.

6.1 Correction from symmetrized trace.

Thus far we have investigated the dynamics of the action at leading order, and seen that

the fuzzy sphere will generally collapse down to small size. It is expected that the effective

action will break down at distances comparable with the string length, and thus 1/N

corrections will become important. In order to deal with this situation we look at the next

order terms due to the symmetrized trace corrections. As we have already seen, we can

write the first order correction to the energy as

Ẽ1 =

(

1 − 2

3
C

∂2

∂C2

)

Ẽ0, (6.18)

which yields

Ẽ1 =
N√

H
√

1 − Hṙ2

(

W (k,C) +
2Ck4

3W (k,C)3/2π4C4
− 2k2C

3W (k,C)π2C3

)

. (6.19)

Where, for simplicity, we have re-introduced the notation

W (k,C) =

√

1 +
k2

π2C
. (6.20)

This term can be thought of as a mass term, by seeing how it arises in the context of

the energy. In the Dp-brane case (and in flat space) this term will be position dependent,

and we have the notion of a position dependent mass. However, the near horizon of the

NS5-brane background removes the radial dependence leaving us with a constant. Because

we are using the supergravity approximations in our analysis, we are taking k and N to

be large, and so this ’mass’ term is positive, but may be small if we demand that the ratio

k/N be small. If we now employ the canonical formulation of the energy, we can set the

Π̃ terms to zero to find the corrected potential for the probe branes up to leading order in

1/C

V1 =
N√
H

(

W (k,C) − 2k2

3W (k,C)π2C2

)

. (6.21)

The potential does not vanish with this correction because we have the supergravity con-

dition k À N where both k and N are integers. In fact, even taking into account higher

order corrections [18], the potential is nowhere vanishing. Thus the symmetrized trace

correction does not yield a bounce solution.

6.2 Non-Abelian tachyon map.

It has been shown in the case of a single probe brane, that the unstable dynamics in the

NS5-brane background is more easily understood in terms of the rolling tachyon, since

the energy momentum tensors have similar behaviour at late times. We may ask what the
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implications are when we have multiple coincident branes with a U(N) symmetry on their

worldvolumes. This relationship can be explicitly demonstrated by mapping the probe

brane action into that of the tachyon action in flat Minkowski space. This is particularly

simple in the Abelian case, but we wish to show that it is also possible in our non-Abelian

construction. The corresponding non-Abelian action for tachyons in a flat background, to

leading order [24], can be written

S = −τpVp

∫

dtNV (T )
√

1 − Ṫ 2. (6.22)

Because the tachyon field does not take values in the SU(2) algebra we find that the action is

simply N times that of a single non-BPS brane. In fact this corresponds to a configuration

of branes each separated by distances larger than the string length, as found in constructions

of Assisted Inflation [28]. In this scenario each of the tachyons is assumed to follow a similar

trajectory toward the late time attractor point, namely T1 ∼ T2 . . . ∼ TN ≡ T . Here Vp

is the effective ’volume’ of each brane, whilst V (T ) is the tachyon potential which we will

assume to be of the form;

V (T ) =
1

cosh(T/T0)
, (6.23)

where the tachyon is a scalar field with dimensions of length. We remind the reader of the

action for the probe brane in the NS5-background, which we have already show to be

S = −τpVp

∫

dt
NW (r)√

H

√

1 − Hṙ2, (6.24)

where, for simplicity, we have absorbed the potential term into our definition of W (r).

Clearly we can map this action to that of the non-Abelian tachyon by making the identi-

fication

dT̃ =
√

Hdr, V (T̃ ) =
W (r)√

H
. (6.25)

Using the near horizon approximation we can solve for the geometrical tachyon in terms of

the physical radius of the fuzzy sphere. The result, up to arbitrary constants of integration,

is simply an exponential as expected from the Abelian case which allows us to write the

tachyon field as

T̃ ∼
√

kl2s ln(r). (6.26)

The solution tells us that as r → 0, T̃ → −∞ as expected, whilst as r → rmax we find

T̃ → T̃max. Clearly this is not the general behaviour associated with the open string

tachyon solution, which we should have expected from the Abelian theory, but we may

anticipate that the decay of the fuzzy sphere will also be describable in terms of this rolling

tachyon solution. Using our field redefinition, we write the expression for the tachyon

potential as

V (T̃ ) =

√

1

kl2s

(

1 +
k2

π2C

)

exp

(

T̃
√

kl2s

)

. (6.27)

The form of the potential shows that it had its maximum at T̃ = 0, and tends to zero

for T̃ → −∞. The exact maximum will be defined by the number of source branes, as
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expected from the Abelian case. However note that there is a correction term present here

due to the fuzzy sphere, which does not occur in the leading order tachyon action as we

know that the tachyonic scalar field is a commuting variable. Therefore although we can

capture the general behaviour of the tachyon action, we must go beyond leading order to

find closer agreement. If we construct the Energy-Momentum tensor associated with this

rolling tachyon solution, omitting the delta functions which localise the tensor on the brane

world-volumes, we obtain

T00 =
NV (T̃ )

√

1 − (∂tT̃ )2

Tij = −NV (T̃ )

√

1 − (∂tT̃ )2, (6.28)

which shows that the pressure tends to zero as the potential tends to zero, ie, when the

probe branes approach the fivebranes at late times. This is because the probe brane will

emit energy in closed string modes as the fuzzy sphere collapses, and the resulting matter

will be Non-Abelian pressureless fluid. One must also imagine that because the fuzzy

sphere collapses in the near throat region of the fivebranes, becoming pointlike at distances

approaching the string length, the harmonic function approximation may fail, and there

will certainly be quantum corrections to take into account. This is due in part to the back

reaction of the probes on the source branes and the throat, therefore in order to determine

the physics of this non-Abelian fluid it will be necessary to calculate this back reaction

term and incorporate it into the action. In any case, it would be useful to compute the

dynamics of this configuration using the exact CFT on the world volume which would help

shed further light on the validity of the classical solution.

7. Non-BPS branes in fivebrane backgrounds

We now wish to extend our discussion to include non-BPS branes in this coincident five-

brane background. As is well known the BPS Dp-brane is a soliton solution of the non-BPS

D(p + 1)-brane, where the soliton is associated with the condensation of the open string

tachyon on the world-volume. We begin by introducing the natural extension of the Abelian

action for N Non BPS branes [24].

S = −
∫

dp+1ζStrV (T )e−(φ−φ0)
√

− det(P[Eab + Eai(Q−1 − δ)ijEjb] + λFab + Tab)

×
√

detQi
j (7.1)

where Tab is the tensor containing all the open string tachyon terms, and is given by

Tab = λDaTDbT − DaT [xi, T ](Q−1)ij [x
j , T ]DbT + · · · . (7.2)

Note that we are now taking the tachyon to be a dimensionless scalar field on the world-

volumes of the NDp-branes by reinstating the factors of α′. We now expand the action to
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lowest order, and we will drop the gauge field term so that covariant derivatives reduce to

normal derivatives. The resulting action can be written

S = −
∫

dp+1ζSTr
V (T )√

H

√

(1 + Hλ2∂0φi∂0φjδij + λ∂0T∂0T )

(

1 − 1

2
H2[φi, φj ][φj , φi]

)

.

(7.3)

We again use the SU(2) ansatz for the radially dependent transverse scalars which reduces

the action to a more tractable form

S = −
∫

dp+1ζN
V (T )√

H

√

(1 − Hλ2CṘ2 − λṪ 2)(1 + 4H2λ2CR4). (7.4)

The presence of the open string tachyon will generally prohibit exact solutions to the

equations of motion for the radion field unless we take various asymptotic limits. This

is obvious, as the form of the action shows that the conjugate momenta associated with

the radion and tachyon fields will not be conserved. Fortunately there is a way to resolve

this problem by using symmetry transformations of the various fields, which allows us to

construct a new conserved charge and hence solve the equations of motion for specific

regions of field space.

We will start by considering the usual form of the tachyon potential for the superstring,

given by

V (T ) =
1

cosh(T/
√

2)
, (7.5)

which tends to an exponential for large T in agreement with calculations from string field

theory and BCFT [3]. We insert this into the action, and once again switch to using

physical distance. We note that the current form of the potential will make it difficult to

find symmetries of the action as it stands, thus it will be more useful to make the following

field redefinition [26, 4] as we did for the coincident D-brane background

T̃√
2

= sinh

(

T√
2

)

, (7.6)

and for convenience we re-write T̃ = T for ease of calculation, although we will always

imply that this is the re-definition of the original tachyon field. As mentioned previously

there may be objections to performing this kind of field redefinition using the non-Abelian

action in this gravitational background. Assuming that this won’t be too problematic, we

can now proceed to analyse the resulting action,

S = −τp

∫

dp+1ζ
N√
HF

√

√

√

√

(

1 − Hṙ2 − λṪ 2

F

)

(

1 +
4H2r4

λ2C

)

, (7.7)

where we have introduced the following definitions

F =

(

1 +
T 2

2

)

, H = 1 +
kl2s
r2

. (7.8)
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We can now try to find the conserved charge associated with transformations of this action,

and use that in conjunction with the energy density to solve the equations of motion.

Unfortunately we see that this is still non trivial unless we make further approximations,

thus we will look at the theory in the large T and small r limit. Since the large tachyon

field gives rise to a gas of closed strings arising due to tachyon condensation, we expect to

find that the radial field on the probe branes will describe the late time dynamics of this

gas. The action in this instance, reduces to

S = −τp

∫

dp+1ζ

√
2Nr

√

kl2sT

√

1 − kl2s ṙ
2

r2
− 2λṪ 2

T 2

√

1 +
k2

π2C
, (7.9)

At this juncture we will reintroduce the W (k,C) notation to simplify things, and further-

more, we postulate that the action be invariant under the following transformations

δT = εT, δr = εr, (7.10)

for some parameter ε. Note that this is a transformation involving the open strings on the

world-volume and also the transverse scalars, and can be thought of as an example of the

stringy space-time uncertainty principle [30]

∆t∆X ≥ α′ (7.11)

where distances on the world-sheet are inversely related to distances in the bulk. Since

the NS5-brane world-volume theory is related to a Little String Theory (LST), it would

be interesting to find out the implications of the transformations on the LST side. By

variation of the action, we determine that the charge associated with this symmetry is

given by

D =
Nr

√
2

T
√

kl2s

(

kl2s ṙ

r
+

2λṪ

T

)

W (k,C)
√

1 − kl2s ṙ2

r2 − 2λṪ 2

T 2

, (7.12)

which can be seen to have dimensions of length. We can also derive the canonical energy

density associated with the action, using the canonical momenta of the radion and the

tachyon fields. For brevity we will simply state the resultant dimensionless energy density

and not the individual momenta

Ẽ =
Nr

√
2W (k,C)

T
√

kl2s

1
√

1 − kl2s ṙ2

r2 − 2λṪ 2

T 2

. (7.13)

It can be seen that both Ẽ and D are conserved, as expected, and it will be useful to

combine both of these charges to form a solitary conserved charge

Q =
D

Ẽ
=

kl2s ṙ

r
+

2λṪ

T
, (7.14)

which after some manipulation can be used to define the tachyon field via

T = Co exp

(

Qt

2λ

)

r−k/4π, (7.15)
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where C0 is a constant of integration. Furthermore, from (7.14) we can also find the time

dependence of the tachyon field in this condensing limit.

Ṫ = T

(

Q

4πl2s
− kṙ

4πr

)

. (7.16)

As we are probing the large T region of field space, we expect that the dominant con-

tribution to the charge will come from the radial modes. Now that we have written the

tachyon field in terms of this conserved charge we can attempt to solve the radial equations

of motion. Note that this would be extremely challenging if we had tried to proceed from

the original form of the action without this enhanced symmetry. We will initially consider

the case where Q = 0. This obviously implies that we are setting D → 0, which may seem

strange, however we have used the charge to construct an expression for the tachyon field

and so it is valid. By setting Q = 0 we are identifying the condensation of the tachyon field

with the inverse of the radion field on the probe branes (up to some power), and so small

r will automatically imply large T . The simplicity of this approach is now clear, since we

began with two distinct fields and have effectively coupled them via the conserved charge

thus only requiring us now to solve for one of the fields. We now substitute the expressions

for the tachyon into the energy equation, which will now be a function of r.

Ẽ =
NW (k,C)ry

√
2

C0

√

kl2s

1
√

1 − kl2s ṙ2

r2

(

1 + k
4π

)

(7.17)

and for future reference, we will introduce the simplifying notation

B =
NW (k,C)

√
2

ẼC0

√

kl2s
, y = 1 +

k

4π
, x = kl2s

(

1 +
k

4π

)

(7.18)

Rearranging the energy equation allows us to solve for r(t), which we find to be, up to

constants of integration

1

r
∼

(

B cosh

[±y(t − t0)√
x

])1/y

, (7.19)

where t0 parameterises some initial time for the dynamics. This solution describes an

expanding fuzzy sphere which reaches its maximum size at t = t0 and thereafter collapses

down to zero size. We easily find that the maximum radius will be given by

rmax =

(

ẼC0

√

kl2s
NW (k,C)

√
2

)1/y

. (7.20)

The physics behind this solution can be understood. As the fuzzy sphere expands, the

tension of the non-BPS branes is increased as the tachyon moves closer to the top of its

potential (assumed to be located at T = 0 ). Thus the expanding solution has a natural

braking force that restricts it to expand to a certain size. Conversely in the collapsing

phase, the non-BPS branes feel a decreasing tension which goes to zero as the solution

collapses to the origin.
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We can also now determine the constant of integration by demanding that T = T0 at

t = t0, and since we are in the large T region of field space we will assume that |T0| À 1.

After some manipulation we find

C0 = T y
0

(

NW (k,C)
√

2

Ẽl2s
√

k

)k/4π

, (7.21)

and therefore we can completely determine the behaviour of the tachyon near condensation,

in the approximation where Q = 0. It is natural to now consider the case where Q 6= 0,

however we should note that this case is not solvable exactly, and we must be forced into

making approximations,r If we insert the full expression for the tachyon field into the energy

equation we find

1 − kl2s ṙ
2

r2
− l2s

4π

(

Q2

l4s
− 2Qkṙ

l2sr
+

k2ṙ2

r2

)

= B2e−Qt/λr2y. (7.22)

Now at late times we see that the r.h.s. of this equation will become vanishingly small, and

so we neglect it in our analysis. This allows us to rewrite the l.h.s. as a quadratic equation,

which we solve to find

ṙ

r
=

Qk ± 2
√

kπ(4πl2s + kl2s − Q2)

(4πk + k2)l2s
= β, (7.23)

and upon integration we can determine the late time behaviour of the fuzzy sphere

r ' r0 exp(βt), (7.24)

with the corresponding late time solution for the tachyon field given by

T ' exp

(

Qt

4λ

)

exp(−kβt/8π). (7.25)

Now if we look for a collapsing solution we must take β to be negative in (7.24), where we

must bear in mind that the solution is only valid for large t, corresponding to late time

dynamics of the radial modes. In this case the tachyon field will be large even if the charge

Q is small, and so our analysis is consistent. Furthermore having non-zero Q appears to

imply that there will not be a bounce solution, rather the probe branes will eventually

reach the source branes and the fuzzy sphere will collapse to zero size. This can be seen

from (7.23) which suggests that for a real solution, we must ensure that (4π + k)l2s ≥ Q2.

In the large k limit this is approximated by the constraint kl2s ≥ Q2. Clearly if this is

saturated then we find

β → Q

(4π + k)l2s
, (7.26)

which is dependent upon the sign of Q. If we accept the constraint, then for β to be

negative we require

4π(4πl2s + kl2s − Q2) > Q2k, (7.27)

which becomes

4πl2s > Q2 (7.28)
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when we ensure k À 1. Clearly the only way to satisfy this constraint is to assume that Q

is vanishingly small. This is inconsistent with (7.14) for both expanding and contracting

solutions.

One way of interpreting the physical aspect of the conserved charge is that it parame-

terises the deviation from the single field duality we found when we identified the tachyon

field with the inverse of the radial mode.

8. Higher (even) dimensional fuzzy spheres

So far our analysis has dealt with collapsing fuzzy 2-spheres in curved backgrounds, thus

it would be useful to extend this to higher dimensional fuzzy spheres. We will briefly look

at the fuzzy 4-sphere before commenting on how our analysis can generalise to the fuzzy

2k sphere where k is an integer. In the following discussion we will concern ourself with

D-brane backgrounds for simplicity, as to consider the NS5-brane background we will have

to use T-duality.

We begin by constructing the fuzzy S
4, where we need five transverse scalar fields

satisfying the following ansatz

φi = ±RGi, i = 1 . . . 5. (8.1)

This will obviously imply that we can only look at p ≤ 4 backgrounds. The Gi matrices

above arise through the totally symmetric n-fold tensor product of the gamma matrices of

SO(5), which have dimension

N =
(n + 1)(n + 2)(n + 3)

6
. (8.2)

For a detailed description of these constructions we refer the interested reader to [31, 32, 11]

and the references therein In terms of the physical radius we find a similar relationship to

the case of the SU(2) algebra, where we write

r = λ
√

CR, (8.3)

note that in this instance R must be positive definite and the Casimir is given by products

of the Gi, as usual, where we have GiGi = C1N×N = n(n + 4)1N×N . We can now use

this ansatz in our non-Abelian DBI effective action, which we again treat as a lowest order

expansion. The resultant action may be written

S = −τp′

∫

dp′+1ζNH(p−p′−4)/4
√

1 − Hλ2CṘ2
(

1 + 4Hλ2CR4
)

− τp′δpp′

∫

dp′+1ζ
qN

H
,

(8.4)

where the Chern-Simons term only couples to the action for p = p′ as usual. From this

action we can derive the usual canonical momenta and energy, which yields the following

static potential in terms of physical distances

Veff = τp′NH(p−p′−4)/4

(

1 +
4Hr4

λ2C

)

, (8.5)
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note that this appears to gave exactly the same basic structure as the fuzzy S
2 potential

except that now p ≤ 4 because of our ansatz. Before we comment on this solution, we

should discuss the extension to the fuzzy S
6. We again use the Gi matrices which are now

representations of SO(7) as i runs over seven transverse dimensions. Again the G’s arise

from the action of gamma matrices on the traceless, symmetric n-fold tensor product of

the spinor, and we have the following relationship between the dimension of the matrices

and the number of branes

N =
(n + 1)(n + 2)(n + 3)2(n + 4)(n + 5)

360
. (8.6)

The relationship between the physical radius and the transverse scalar ansatz is the same as

before except that the Casimir has a different definition GiGi = C1N×N = n(n + 6)1N×N .

This suggests that we can make the following generalisation. For the fuzzy S
2k sphere

in ten dimensions, where k ≤ 4 we require 2k + 1 transverse scalar fields which can be

parameterised by the action of SO(2k + 1) gamma matrices on tensor products of the

spinor. If we assume that this is correct then we propose to write the general form of the

action for fuzzy S
2k in a curved D-brane background [11]

S = −τp′

∫

dp′+1ζNH(p−p′−4)/4
√

(1 − Hλ2CkṘ2)(1 + 4Hλ2CkR4)k − τp′δpp′

∫

dp′+1ζ
qN

H
.

(8.7)

Where we have written Ck to indicate that the Casimir refers to the gauge group SO(2k+1).

The factor of k imposes restrictions upon the dimensionality of the background branes, in

fact the maximum value of p is pmax = 8 − 2k. Thus we see that for the fuzzy S
8 we can

only consider D0-branes probing the D0-brane background. Using the general form of the

action we define the effective potential, in physical coordinates, to be

Veff = Nτp′

{

H(p−p′−4)4

(

1 +
4Hr4

λ2Ck

)k/2

− qδpp′

}

. (8.8)

In general we see that the bosonic part of the potential will always tend to zero in the

near horizon region, implying that the fuzzy spheres will collapse toward zero size. Thus

the only case of interest relates to p = p′ when there is the additional term coming from

the bulk RR charge of the background branes. In the small radius limit we find that the

potential reduces to

Veff =
Nτp′

H

{

(

1 +
4kpr

p−3

λ2Ck

)k/2

− q

}

. (8.9)

We can differentiate this potential to see if there are any solutions corresponding to stable

mimima at which point the fuzzy sphere may stabilise, however we see that there are no

real solutions again implying that all fuzzy spheres are unstable in D-brane backgrounds

with the exception of p = 6, p′ = 0 which we discussed in a previous section.

The generalised form of the equation of motion can be written as

ṙ2 =
1

H

{

1 −
N2τ2

p′H
(p−p′−4)/2

E2

(

1 +
4Hr4

λ2Ck

)k/2
}

, (8.10)
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where we are using a generalised expression for the energy. If we again assume that the

velocity and the radius can be treated as complex variables with the equation of motion as a

constraint, we can calculate the genus of the underlying Riemannian surface. Interestingly

the results similar to those obtained in section 3, with the number of branch points being

the same, though the the genus is dependent upon the dimensionality of the branes and on

the non-Abelian group structure. This may change once corrections to the symmetrized

trace are taken into account.

9. Discussion

In this note we have extended the work on time dependent solutions to include multiple

probe branes via the non-Abelian effective DBI action. In particular we have focused on

the dynamics of BPS and non-BPS branes in the curved backgrounds of Dp-branes and

NS5-branes. This preliminary analysis has not dealt with the difficult problem of Dp′-

branes in the Dp-background, nor the fundamental string background - which is exactly

soluble in the Abelian case. It would certainly be useful to continue this line of enquiry in

the future. It would also be useful to consider ring backgrounds, both for the Dp-brane and

NS5-brane backgrounds as a natural extension of the work in [13, 33, 34, 2] which could

shed further light on the geometrical nature of the tachyon. The D6 ring could also be

an interesting case to study, as we could imagine a more general construction of a toroidal

QHS.

We have seen that the fuzzy sphere is not generally a stable object when placed in non-

trivial backgrounds (the exception is the D6 − D0 system). Of course, this has only been

investigated to leading order and there are many ways in which to stabilise the spheres

using fluxes [8]. Furthermore, we have only treated the configuration as a probe of the

geometry. In more realistic scenarios there will be considerable back reaction upon the

background which needs to be taken into account, as well as quantum corrections when

the radius becomes significantly small. We also know that the classical motion of D-

branes in NS5-brane background [2] has a potential divergence in the closed string energy

emission. We have not calculated this term here, but it would be interesting to verify

that the same thing occurs in the non-Abelian picture, and also determine whether this

imposes any constraints upon the dimensionality of the probe branes. Additionally we have

looked at the underlying geometry of the holomorphic differentials in curved backgrounds,

which suggests that they correspond to surfaces of high genus which are clustered near the

origin and thus unresolvable when we are far away, mimicking the results obtained in flat

space [11]. The genus of the particular surface is dependent upon the dimensionality of the

branes in the bulk spacetime. Smaller values of p correspond to surfaces of higher genus,

however larger values of p−p′ correspond to surfaces of smaller genus. In the Abelian theory

we see that there appears to be a relationship between the existence of supersymmetry

and a Riemmanian sphere, which is broken when we lift to the non-Abelian theory. The

underlying reasons for this are unclear as the p = 6, p′ = 2 solution now describes a torus

as opposed to the sphere. Furthermore we know that the automorphisms of the curves in

flat space are destroyed when we move into the near horizon geometry, and the large-small
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dualities between collapsing and static solutions must be modified accordingly. We would

like to know whether this duality holds (albeit modified) in the throat geometry, and what

are the implications for the automorphisms.

By careful choice of ansatz for the non-commuting coordinates, we have been able to

study a rotating fuzzy sphere. In the first instance we were able to find an expansion

of the action allowing for small angular momentum densities, but only for p ≤ 5. This

showed that there were no bound states permitted for the fuzzy sphere. A second ansatz

for general angular momentum imposed stricter restrictions upon the dimensions of the

branes, limiting us to p ≤ 3. Again, we saw no possibility for bound states and thus the

fuzzy sphere with angular momentum is still unstable. In any case, we would not anticipate

the configuration to be stable as the D-branes can emit their Ramond-Ramond charge via

synchrotron emission [35]. It would be useful to find an ansatz to allow for the inclusion

of p = 6 backgrounds as there is the possibility of a bound state in that case, however this

may require uplifting to M-theory.

The non-BPS system in both Dp-brane and NS5-brane background leads to richer

dynamics than in the BPS case, thanks to the existence of world-volume symmetries. In

both cases we looked at the classical solutions when the tachyon field affects the strength

of the gravitational attraction of the branes to the background. From the Abelian field

theory description of unstable branes, we know that as T → ±∞ the open string modes are

confined leading to the destruction of the brane and the appearance of a stringy fluid [5].

The dual picture should give us some insight into what happens in the non-Abelian theory,

and whether the Open/Closed duality conjecture remains valid. We used the symmetry of

the fields to explicitly examine the D3-backgrounds, but it would be useful to extend the

work of Kluson [4] to the full symmetry transformation for general Dp-brane backgrounds.

This additional symmetry has profound effects on the dynamics of the fuzzy sphere in

the near horizon geometry, however we do not know if the symmetry even exists in the

quantum theory.

We have briefly examined the dual version of the QHS and found agreement [19, 15]

with aspects of the Abelian theory, namely that the stabilisation radius of the system

is almost identical. The origin of the string contribution is unclear in our non-Abelian

construction and so we have only constructed the dual picture to the dielectric effect,

namely the Myers effect. Furthermore, we have shown that the equations of motion in

the two pictures are identical in a curved background when we take the large N limit of

the symmetrized trace. It would be useful to extend the work initiated here to the study

of the non-Abelian QHS model and compare the results to those obtained using matrix

theory. Finally we have investigated higher (even) dimensional fuzzy spheres in the Dp-

brane background and found that only collapsing solutions are admissible. The case of

odd dimensional fuzzy spheres is non-trivial and certainly merits future investigation. In

addition, it would be interesting to try and construct the dual pictures of these collapsing

solutions to see if the equations of motion are identical in the Abelian theory. This is

complicated by many factors, for example the classical limit of the fuzzy 4-sphere is six

dimensional because the algebra belongs to the coset SO(5)/U(2). We must project out

the U(2) states in order to construct the dual picture. We hope that this note has provided
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some small insight into the dynamics of fuzzy spheres in selected curved backgrounds, and

we hope to return to some of these problems in the future.
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